Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Adv Sci (Weinh) ; : e2401005, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582524

RESUMO

Mg-ion batteries (MIBs) are promising next-generation secondary batteries, but suffer from sluggish Mg2+ migration kinetics and structural collapse of the cathode materials. Here, an H2O-Mg2+ waltz-like shuttle mechanism in the lamellar cathode, which is realized by the coordination, adaptive rotation and flipping, and co-migration of lattice H2O molecules with inserted Mg2+, leading to the fast Mg2+ migration kinetics, is reported; after Mg2+ extraction, the lattice H2O molecules rearrange to stabilize the lamellar structure, eliminating structural collapse of the cathode. Consequently, the demo cathode of Mg0.75V10O24·nH2O (MVOH) exhibits a high capacity of 350 mAh g-1 at a current density of 50 mA g-1 and maintains a capacity of 70 mAh g-1 at 4 A g-1. The full aqueous MIB based on MVOH delivers an ultralong lifespan of 5000 cycles The reported waltz-like shuttle mechanism of lattice H2O provides a novel strategy to develop high-performance cathodes for MIBs as well as other multivalent-ion batteries.

2.
J Am Chem Soc ; 146(18): 12864-12876, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38670931

RESUMO

Deep-ultraviolet (DUV) light sources are technologically highly important, but DUV light-emitting materials are extremely rare; AlN and its alloys are the only materials known so far, significantly limiting the chemical and structural spaces for materials design. Here, we perform a high-throughput computational search for DUV light emitters based on a set of carefully designed screening criteria relating to the sophisticated electronic structure. In this way, we successfully identify 5 promising material candidates that exhibit comparable or higher radiative recombination coefficients than AlN, including BeGeN2, Mg3NF3, KCaBr3, KHS, and RbHS. Further, we unveil the unique features in the atomic and electronic structures of DUV light emitters and elucidate the fundamental genetic reasons why DUV light emitters are extremely rare. Our study not only guides the design and synthesis of efficient DUV light emitters but also establishes the genetic nature of ultrawide-band-gap semiconductors in general.

3.
Nanomicro Lett ; 16(1): 184, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684597

RESUMO

Rechargeable magnesium-metal batteries (RMMBs) are promising next-generation secondary batteries; however, their development is inhibited by the low capacity and short cycle lifespan of cathodes. Although various strategies have been devised to enhance the Mg2+ migration kinetics and structural stability of cathodes, they fail to improve electronic conductivity, rendering the cathodes incompatible with magnesium-metal anodes. Herein, we propose a dual-defect engineering strategy, namely, the incorporation of Mg2+ pre-intercalation defect (P-Mgd) and oxygen defect (Od), to simultaneously improve the Mg2+ migration kinetics, structural stability, and electronic conductivity of the cathodes of RMMBs. Using lamellar V2O5·nH2O as a demo cathode material, we prepare a cathode comprising Mg0.07V2O5·1.4H2O nanobelts composited with reduced graphene oxide (MVOH/rGO) with P-Mgd and Od. The Od enlarges interlayer spacing, accelerates Mg2+ migration kinetics, and prevents structural collapse, while the P-Mgd stabilizes the lamellar structure and increases electronic conductivity. Consequently, the MVOH/rGO cathode exhibits a high capacity of 197 mAh g-1, and the developed Mg foil//MVOH/rGO full cell demonstrates an incredible lifespan of 850 cycles at 0.1 A g-1, capable of powering a light-emitting diode. The proposed dual-defect engineering strategy provides new insights into developing high-durability, high-capacity cathodes, advancing the practical application of RMMBs, and other new secondary batteries.

4.
Oncol Lett ; 27(5): 194, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38495832

RESUMO

Apatinib plus chemotherapy demonstrates good efficacy in multiple advanced carcinomas; however, its use in patients with advanced lung adenocarcinoma (LUAD) has not yet been assessed. The present study evaluated the potential benefits of apatinib plus chemotherapy in patients with advanced LUAD. A total of 145 patients with advanced LUAD and negative driver genes who received apatinib plus chemotherapy (n=65) or chemotherapy alone (n=80) were analyzed. The overall response rate was significantly improved by apatinib plus chemotherapy vs. chemotherapy alone (53.8 vs. 36.3%; P=0.034). Moreover, progression-free survival (PFS) was significantly longer in patients who received apatinib plus chemotherapy, compared with those who received chemotherapy alone [median (95% CI), 13.4 months (11.5-15.3) vs. 8.2 months (6.9-9.5); P<0.001], as was overall survival (OS) [median (95% CI), 23.1 months (not reached) vs. 17.0 months (14.6-19.4; P=0.001). Following adjustment by multivariate Cox regression analysis, apatinib plus chemotherapy was associated with a significantly longer PFS [hazard ratio (HR), 0.444; P<0.001] and OS (HR, 0.347; P<0.001), compared with chemotherapy alone. Subgroup analyses revealed that PFS and OS were significantly improved following apatinib plus chemotherapy vs. chemotherapy alone (all P<0.05) in patients receiving first- or second-line treatment. Notably, the incidence of hypertension was significantly increased following apatinib plus chemotherapy vs. chemotherapy alone (43.1 vs. 25.0%; P=0.021), whereas the incidence of other adverse events was not significantly different between the two treatment groups (all P>0.05). In conclusion, apatinib plus chemotherapy is associated with an improved treatment response and survival compared with chemotherapy alone, with a tolerable safety profile in patients with advanced LUAD.

5.
J Am Chem Soc ; 146(10): 6618-6627, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349322

RESUMO

Single-crystal semiconductor-based photocatalysts exposing unique crystallographic facets show promising applications in energy and environmental technologies; however, crystal facet engineering through solid-state synthesis for photocatalytic overall water splitting is still challenging. Herein, we develop a novel crystal facet engineering strategy through solid-state recrystallization to synthesize uniform SrTiO3 single crystals exposing tailored {111} facets. The presynthesized low-crystalline SrTiO3 precursors enable the formation of well-defined single crystals through kinetically improved crystal structure transformation during solid-state recrystallization process. By employing subtle Al3+ ions as surface morphology modulators, the crystal surface orientation can be precisely tuned to a controlled percentage of {111} facets. The photocatalytic overall water splitting activity increases with the exposure percentage of {111} facets. Owing to the outstanding crystallinity and favorable anisotropic surface structure, the SrTiO3 single crystals with 36.6% of {111} facets lead to a 3-fold enhancement of photocatalytic hydrogen evolution rates up to 1.55 mmol·h-1 in a stoichiometric ratio of 2:1 than thermodynamically stable SrTiO3 enclosed with isotropic {100} facets.

6.
Cell Mol Life Sci ; 81(1): 82, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340178

RESUMO

Interaction between programmed death-1 (PD-1) ligand 1 (PD-L1) on tumor cells and PD-1 on T cells allows tumor cells to evade T cell-mediated immune surveillance. Strategies targeting PD-1/PD-L1 have shown clinical benefits in a variety of cancers. However, limited response rates in hepatocellular carcinoma (HCC) have prompted us to investigate the molecular regulation of PD-L1. Here, we identify B cell lymphoma-2-associated transcription factor 1 (BCLAF1) as a key PD-L1 regulator in HCC. Specifically, BCLAF1 interacts with SPOP, an E3 ligase that mediates the ubiquitination and degradation of PD-L1, thereby competitively inhibiting SPOP-PD-L1 interaction and subsequent ubiquitination and degradation of PD-L1. Furthermore, we determined an SPOP-binding consensus (SBC) motif mediating the BCLAF1-SPOP interaction on BCLAF1 protein and mutation of BCLAF1-SBC motif disrupts the regulation of the SPOP-PD-L1 axis. In addition, BCLAF1 expression was positively correlated with PD-L1 expression and negatively correlated with biomarkers of T cell activation, including CD3 and CD8, as well as with the level of immune cell infiltration in HCC tissues. Besides, BCLAF1 depletion leads to a significant reduction of PD-L1 expression in vitro, and this reduction of PD-L1 promoted T cell-mediated cytotoxicity. Notably, overexpression of BCLAF1 sensitized tumor cells to checkpoint therapy in an in vitro HCC cells-Jurkat cells co-culture model, whereas BCLAF1-SBC mutant decreased tumor cell sensitivity to checkpoint therapy, suggesting that BCLAF1 and its SBC motif serve as a novel therapeutic target for enhancing anti-tumor immunity in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptor de Morte Celular Programada 1 , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor , Evasão da Resposta Imune/genética
7.
Proc Natl Acad Sci U S A ; 121(6): e2318341121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289957

RESUMO

As a prototypical photocatalyst, TiO[Formula: see text] has been extensively studied. An interesting yet puzzling experimental fact was that P25-a mixture of anatase and rutile TiO[Formula: see text]-outperforms the individual phases; the origin of this mysterious fact, however, remains elusive. Employing rigorous first-principles calculations, here we uncover a metastable intermediate structure (MIS), which is formed due to confinement at the anatase/rutile interface. The MIS has a high conduction-band minimum level and thus substantially enhances the overpotential of the hydrogen evolution reaction. Also, the corresponding band alignment at the interface leads to efficient separation of electrons and holes. The interfacial confinement additionally creates a wide distribution of the band gap in the vicinity of the interface, which in turn improves optical absorption. These factors all contribute to the enhanced photocatalytic efficiency in P25. Our insights provide a rationale to the puzzling superior photocatalytic performance of P25 and enable a strategy to achieve highly efficient photocatalysis via interface engineering.

8.
Aging (Albany NY) ; 16(3): 2077-2089, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38126998

RESUMO

The beneficial effects of probiotics have been studied in inflammatory bowel disease, nonalcoholic steatohepatitis, and alcoholic liver disease (ALD). Probiotic supplements are safer and more effective; however, their potential mechanisms are unclear. An objective of the current study was to examine the effects of extracellular products of Lactobacillus plantarum on acute alcoholic liver injury. Mice on a standard chow diet were supplemented with Lactobacillus plantarum ST-III culture supernatant (LP-cs) for two weeks and administered alcohol at 6 g/kg body weight by gavage. Alcohol-induced liver injury was assessed by measuring plasma alanine aminotransferase activity levels and triglyceride content determined liver steatosis. Intestinal damage and tight junctions were assessed using histochemical staining. LP-cs significantly inhibited alcohol-induced fat accumulation, inflammation, and apoptosis by inhibiting oxidative stress and endoplasmic reticulum stress. LP-cs significantly inhibited alcohol-induced intestinal injury and endotoxemia. These findings suggest that LP-cs alleviates acute alcohol-induced liver damage by inhibiting oxidative stress and endoplasmic reticulum stress via one mechanism and suppressing alcohol-induced increased intestinal permeability and endotoxemia via another mechanism. LP-cs supplements are a novel strategy for ALD prevention and treatment.


Assuntos
Endotoxemia , Lactobacillus plantarum , Hepatopatias Alcoólicas , Camundongos , Animais , Fígado , Etanol/toxicidade , Hepatopatias Alcoólicas/prevenção & controle
9.
Adv Sci (Weinh) ; 10(33): e2300386, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37807821

RESUMO

The electronic structure of halide perovskites is central to their carrier dynamics, enabling the excellent optoelectronic performance. However, the experimentally resolved transient absorption spectra exhibit large discrepancies from the commonly computed electronic structure by density functional theory. Using pseudocubic CsPbI3 as a prototype example, here, it is unveiled with both ab initio molecular dynamics simulations and transmission electron microscopy that there exists pronounced dynamical lattice distortion in the form of disordered instantaneous octahedral tilting. Rigorous first-principles calculations reveal that the lattice distortion substantially alters the electronic band structure through renormalizing the band dispersions and the interband transition energies. Most notably, the electron and hole effective masses increase by 65% and 88%, respectively; the transition energy between the two highest valence bands decreases by about one half, agreeing remarkably well with supercontinuum transient-absorption measurements. This study further demonstrates how the resulting electronic structure modulates various aspects of the carrier dynamics such as carrier transport, hot-carrier relaxation, Auger recombination, and carrier multiplication in halide perovskites. The insights provide a pathway to engineer carrier transport and relaxation via lattice distortion, enabling the promise to achieve ultrahigh-efficiency photovoltaic devices.

10.
Aging (Albany NY) ; 15(16): 8013-8025, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37589506

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignant disease with low overall survival; chemotherapy and immunotherapy have limited efficacy. Tumor necrosis factor receptor 2 (TNFR2), a type II transmembrane protein, contributes to the development and progression of several tumors. In this study, we elucidated the effect and molecular mechanisms of TNFR2. METHOD: We used The Cancer Genome Atlas and the Genotype-Tissue Expression database to compare the expression of the TNFR2 gene between normal and malignant pancreatic tissue. Using immunohistochemical staining, we divided the patients into high and low-expression groups, then investigated clinicopathologic data and survival curves of pancreatic cancer patients. We measured TNFR2 protein expression in PANC-1 and ASPC-1 pancreatic cancer cells subjected to TNFR2 small interfering RNA or negative control treatment. We performed proliferation, invasion, and migration assays to study the biological effects of TNFR2 in PDAC. The molecular mechanisms were validated using western blotting. RESULTS: TNFR2 was more highly expressed in PDAC cells and tissues than controls. Abundant expression of TNFR2 was associated with aggressive clinicopathologic characteristics and poor outcomes. Overexpression of TNFR2 promoted PDAC cell proliferation, migration, and invasion in vitro. Mechanistically, TNFR2 binds to TNF-α and activates the NF-κB signaling pathway. CONCLUSION: TNFR2 is a prognostic marker that facilitates the proliferation, migration, and invasion of PDAC via the NF-κB signaling pathway. TNFR2 may become a therapeutic target.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proliferação de Células , NF-kappa B , Receptores Tipo II do Fator de Necrose Tumoral , Transdução de Sinais , Neoplasias Pancreáticas
11.
Curr Neuropharmacol ; 21(11): 2343-2361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533160

RESUMO

BACKGROUND: Brachial plexus avulsion (BPA) animally involves the separation of spinal nerve roots themselves and the correlative spinal cord segment, leading to formidable neuropathic pain of the upper limb. METHODS: The right seventh cervical (C7) ventral and dorsal roots were avulsed to establish a neuropathic pain model in rats. After operation, rats were treated with quercetin (QCN) by intragastric administration for 1 week. The effects of QCN were evaluated using mechanical allodynia tests and biochemical assay kits. RESULTS: QCN treatment significantly attenuated the avulsion-provoked mechanical allodynia, elevated the levels of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) and total antioxidant capacity (TAC) in the C7 spinal dorsal horn. In addition, QCN administration inhibited the activations of macrophages, microglia and astrocytes in the C6 dorsal root ganglion (DRG) and C6-8 spinal dorsal horn, as well as attenuated the release of purinergic 2X (P2X) receptors in C6 DRG. The molecular mechanism underlying the above alterations was found to be related to the suppression of the PKC/MAPK/NOX signal pathway. To further study the anti-oxidative effects of QCN, we applied QCN on the H2O2-induced BV-2 cells in vitro, and the results attested that QCN significantly ameliorated the H2O2-induced ROS production in BV-2 cells, inhibited the H2O2-induced activation of PKC/MAPK/NOX pathway. CONCLUSION: Our study for the first time provided evidence that QCN was able to attenuate pain hypersensitivity following the C7 spinal root avulsion in rats, and the molecular mechanisms involve the reduction of both neuro-inflammatory infiltration and oxidative stress via suppression of P2X receptors and inhibition of the activation of PKC/MAPK/NOX pathway. The results indicate that QCN is a natural compound with great promise worthy of further development into a novel therapeutic method for the treatment of BPA-induced neuropathic pain.


Assuntos
Plexo Braquial , Neuralgia , Ratos , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Peróxido de Hidrogênio , Plexo Braquial/metabolismo , Plexo Braquial/cirurgia , Neuralgia/tratamento farmacológico , Corno Dorsal da Medula Espinal/metabolismo , Estresse Oxidativo
12.
Phys Chem Chem Phys ; 25(27): 17787-17792, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37394989

RESUMO

The organic molecules in hybrid perovskites can easily rotate within the inorganic lattice at room temperature, leading to a crystal-liquid duality. The liquid-like behavior of the organic molecules is commonly believed to play a critical role in the dynamical stability, but the microscopic mechanism remains unclear. Furthermore, the presence of dynamically rotating molecules raises concerns regarding the reliability of assessing the stability of hybrid perovskites based on simple yet commonly used descriptors such as the Goldschmidt tolerance factor. Here we assess the finite-temperature phonons of hybrid perovskites by mapping ab initio molecular dynamics configurations onto an equivalent dynamical pseudo-inorganic lattice and extracting the effective force constants. We find that as compared to the formamidinium or cesium cations, stronger anisotropy and wider range of the thermal motion of the methylammonium molecule are essential for enhancing the dynamical stability of hybrid perovskites. The cation radius that determines the tolerance factor is, in fact, less important. This work not only enables a pathway to further improve the stability of hybrid perovskites, but also provides a general scheme to assess the stability of hybrid materials with dynamical disorder.

13.
Exp Neurol ; 368: 114495, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37495008

RESUMO

Endoplasmic reticulum (ER) stress-induced apoptosis and autophagy flux blockade significantly contribute to neuronal pathology of spinal cord injury (SCI). Yet, the molecular interplay between these two distinctive pathways in mediating the pathology of SCI remains largely unexplored. Currently, we aimed at exploring the crucial role of Stub1 in maintaining ER homeostasis and regulating autophagic flux after SCI. Our results demonstrate that Stub1 reduces ER stress induced neuronal apoptosis, promotes axonal regeneration, inhibits glial scar formation and fosters functional recovery by restoring autophagic flux following SCI. Stub1 enhances autophagic flux following SCI by alleviating the permeabilization of lysosomal membrane through activating TFEB. Importantly, we showed that Stub1 promotes the activation of TFEB by targeting HDAC2 for ubiquitination and degradation. Furthermore, the neuroprotective effect of Stub1 on SCI was abrogated by chloroquine administration, underscoring the essential role of Stub1-mediated enhancement of autophagic flux in its protective effects against SCI. Collectively, our data highlights the vital role of Stub1 in regulating ER stress and autophagy flux after SCI, and propose its potential as a promising target for neuroprotective interventions in SCI.


Assuntos
Apoptose , Traumatismos da Medula Espinal , Ratos , Animais , Humanos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia , Autofagia , Estresse do Retículo Endoplasmático/fisiologia , Medula Espinal/patologia
15.
Theranostics ; 13(2): 849-866, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632224

RESUMO

Background: Increasing evidence suggests that acute traumatic spinal cord injury (SCI)-induced defects in autophagy and autophagy-lysosomal pathway (ALP) may contribute to endothelial barrier disruption following injury. Recently, Kruppel-like factor 2 (KLF2) was reported as a key molecular switch on regulating autophagy. Whether KLF2 coordinates endothelial endothelial ALP in SCI is not known. Methods: Genetic manipulations of KLF2 were performed in bEnd.3 cells and SCI model. Western blot, qRT-PCR, immunofluorescence staining and Lyso-Tracker Red staining, Evans blue dye extravasation, behavioral assessment via Basso mouse scale (BMS), electrophysiology and footprint analysis were performed. Results: In SCI, autophagy flux disruption in endothelial cells contributes to TJ proteins degradation, leading to blood-spinal cord barrier (BSCB) impairment. Furthermore, the KLF2 level was decreased in SCI, overexpression of which alleviated TJ proteins loss and BSCB damage, which improve motor function recovery in SCI mice, while knockdown of KLF2 displayed the opposite effects. At the molecular level, KLF2 overexpression alleviated the TJ proteins degradation and the endothelial permeability by tuning the ALP dysfunction caused by SCI and oxygen glucose deprivation (OGD). Conclusions: Endothelial KLF2 as one of the key contributors to SCI-mediated ALP dysfunction and BSCB disruption. KLF2 could be a promising pharmacological target for the management and treatment of SCI.


Assuntos
Autofagia , Barreira Hematoencefálica , Fatores de Transcrição Kruppel-Like , Traumatismos da Medula Espinal , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo
16.
Mater Today Bio ; 18: 100546, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36691606

RESUMO

Nanoparticle technologies offer a non-invasive means to deliver basic fibroblast growth factor (bFGF) for the treatment of spinal cord injury (SCI). However, the inability of bFGF to accumulate at the injury site and inefficient penetration across the blood-spinal cord barrier (BSCB) remain challenges. The present study describes a dual-targeting liposome (bFGF@Lip-Cp&Rp) with injury lesion targeting and BSCB-penetrating capability to deliver bFGF for SCI treatment. The CAQK peptide (Cp) with injury lesion targeting ability and R2KC peptide (Rp) with BSCB-penetrating capability were grafted onto the liposomes for a flexible and non-invasive drug delivery systems preparation. Results exhibit that the dual-targeted liposomes could significantly cross the BSCB and accumulate at the injury site. During the early stage of SCI, bFGF@Lip-Cp&Rp promotes repair of BSCB and facilitates M2-polarization of macrophages. Regular delivery of bFGF@Lip-Cp&Rp increase HUVECs tube formation and angiogenesis, ameliorate the microenvironment of lesion site, suppress the neuronal apoptosis and axonal atrophy in SCI rats. Importantly, continuous treatment of bFGF@Lip-Cp&Rp supports the restoration of limb motor function in SCI rats. In summary, this research implies that the injury site-targeting and BSCB-penetrating liposomes could be a promising therapeutic approach for the treatment of SCI.

17.
Toxicol Lett ; 373: 184-193, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36460194

RESUMO

The development of cholestatic liver injury (CLI) involves inflammation, but the dominant pathway mediating the chemotaxis is not yet established. This work explored key signaling pathway mediating chemotaxis in CLI and the role of Kupffer cells in the inflammatory liver injury. Probe inhibitors T-5224 (100 mg/kg) for AP-1 and C188-9 (100 mg/kg) for STAT3 were used to validate key inflammatory pathways in alpha-naphthylisothiocyanate (ANIT, 100 mg/kg)-induced CLI. Two doses of GdCl3 (10 mg/kg and 40 mg/kg) were used to delete Kupffer cells and explore their role in CLI. Serum and liver samples were collected for biochemical and mechanism analysis. The liver injury in ANIT-treated mice were significantly increased supported by biochemical and histopathological changes, and neutrophils gathering around the necrotic loci. Inhibitor treatments down-regulated liver injury biomarkers except the level of total bile acid. The chemokine Ccl2 increased by 170-fold and to a less degree Cxcl2 by 45-fold after the ANIT treatment. p-c-Jun and p-STAT3 were activated in the group A but inhibited by the inhibitors in western blot analysis. The immunofluorescence results showed AP-1 not STAT3 responded to inhibitors in ANIT-induced CLI. With or without GdCl3, there was no significant difference in liver injury among the CLI groups. In necrotic loci in CLI, CXCL2 colocalized with hepatocyte biomarker Albumin, not with the F4/80 in Kupffer cells. Conclusively, AP-1 played a more critical role in the inflammation cascade than STAT3 in ANIT-induced CLI. Hepatocytes, not the Kupffer cells released chemotactic factors mediating the chemotaxis in CLI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Quimiotaxia , Fator de Transcrição STAT3 , Fator de Transcrição AP-1 , Animais , Camundongos , 1-Naftilisotiocianato/toxicidade , Biomarcadores , Quimiotaxia/genética , Quimiotaxia/fisiologia , Colestase/metabolismo , Hepatócitos/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Necrose/patologia , Fator de Transcrição AP-1/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fator de Transcrição STAT3/metabolismo
18.
Biochem Biophys Res Commun ; 640: 183-191, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36516527

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. To date, no medication has been approved to treat NAFLD. In this study, we evaluated the therapeutic effect of the natural flavone acacetin on high-fat diet (HFD)-induced NAFLD in mice and the underlying mechanisms. We found that acacetin (10, 20, 50 mg/kg/day) suppressed the increase in body weight, serum total cholesterol, triglycerides, low-density lipoprotein, aspartate aminotransferase, and alanine aminotransferase levels in mice fed with HFD with a dose-dependent manner. Hepatic lipid accumulation, iron overload, and lipid peroxidation were significantly alleviated by acacetin. Quantitative PCR and western blotting revealed that acacetin inhibited endoplasmic reticulum (ER) stress, ferroptosis, and expressions of lipid acid synthesis-related genes in the livers of HFD mice. Similar results were observed in HepG2 cells treated with oleic acid and lipopolysaccharide. The suppressive effects of acacetin on triglycerides and expression of lipid acid synthesis genes were abolished by ER stress and the ferroptosis activators, erastin or TU. Interestingly, the action of TU was more potent than that of erastin. Treatment with the ER stress inhibitor GSK and the ferroptosis inhibitor Fer-1 revealed that ER stress was the upstream signal of ferroptosis for hepatic lipid accumulation. These findings suggest the protective effect of acacetin against lipid accumulation via suppressing ER stress and ferroptosis and provide evidence that ER stress is an upstream signal of ferroptosis in lipid accumulation. Acacetin may be a promising candidate agent for NAFLD treatment.


Assuntos
Ferroptose , Flavonas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Flavonas/farmacologia , Flavonas/uso terapêutico , Flavonas/metabolismo , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos , Estresse do Retículo Endoplasmático , Camundongos Endogâmicos C57BL
19.
Hum Brain Mapp ; 44(2): 484-495, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36111884

RESUMO

The ascending arousal system plays a crucial role in individuals' consciousness. Recently, advanced functional magnetic resonance imaging (fMRI) has made it possible to investigate the ascending arousal network (AAN) in vivo. However, the role of AAN in the neuropathology of human insomnia remains unclear. Our study aimed to explore alterations in AAN and its connections with cortical networks in chronic insomnia disorder (CID). Resting-state fMRI data were acquired from 60 patients with CID and 60 good sleeper controls (GSCs). Changes in the brain's functional connectivity (FC) between the AAN and eight cortical networks were detected in patients with CID and GSCs. Multivariate pattern analysis (MVPA) was employed to differentiate CID patients from GSCs and predict clinical symptoms in patients with CID. Finally, these MVPA findings were further verified using an external data set (32 patients with CID and 33 GSCs). Compared to GSCs, patients with CID exhibited increased FC within the AAN, as well as increased FC between the AAN and default mode, cerebellar, sensorimotor, and dorsal attention networks. These AAN-related FC patterns and the MVPA classification model could be used to differentiate CID patients from GSCs with 88% accuracy in the first cohort and 77% accuracy in the validation cohort. Moreover, the MVPA prediction models could separately predict insomnia (data set 1, R2  = .34; data set 2, R2  = .15) and anxiety symptoms (data set 1, R2  = .35; data set 2, R2  = .34) in the two independent cohorts of patients. Our findings indicated that AAN contributed to the neurobiological mechanism of insomnia and highlighted that fMRI-based markers and machine learning techniques might facilitate the evaluation of insomnia and its comorbid mental symptoms.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Humanos , Distúrbios do Início e da Manutenção do Sono/diagnóstico por imagem , Mapeamento Encefálico/métodos , Estado de Consciência , Cerebelo , Imageamento por Ressonância Magnética/métodos , Nível de Alerta , Encéfalo/diagnóstico por imagem
20.
Nat Comput Sci ; 3(3): 210-220, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177885

RESUMO

Conventional computational approaches for modeling defects face difficulties when applied to complex materials, mainly due to the vast configurational space of defects. In this Perspective, we discuss the challenges in calculating defect properties in complex materials, review recent advances in computational techniques and showcase new mechanistic insights developed from these methods. We further discuss the remaining challenges in improving the accuracy and efficiency of defect modeling in complex materials, and provide an outlook on potential research directions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA